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ABSTRACT 

The Mars  Pathfinder mission illustrated the bene- 
fits of including  a  mobile  robotic  explorer  on  a  plan- 
etary mission. However, for future Mars rover mis- 
sions, significantly increased  autonomy in navigation 
is required in order to  meet  demanding mission cri- 
teria.  To  address  these  requirements, we have devel- 
oped new path  planning  and localisation  capabilities 
that allow a rover to  navigate  robustly to a distant 
landmark.  These  algorithms have been  implemented 
on the JPL Rocky 7 prototype 
been tested  extensively in the 3 
as in natural  terrain. 

1. INTRODUCTI,Y)N 

Mars  sample  return missions currently being 
planned call for rovers capable of operation for up 
to a  year. The rovers are required to, traverse  up to  
100m/sol and to reach ground-specified targets ac- 
curately. Lessons learned from Mars  Pathfinder indi- 
cate a need for significantly increased rover autonomy 
in order to meet mission criteria  within severe con- 
straints including limited  communication  opportuni- 
ties with  Earth, power, and  computational resources. 
Each rover will be working in unknown, rough terrain. 
Given a goal that  cannot  be seen from the rover’s 
location,  the rover must use its sensors to navigate 
safely and  accurately to  the goal using autonomous 
processes. This will require, in particular, improved 
motion  planning  and  localisation  algorithms. 

To  address the constraints  upon  motion  planning 
for Mars rovers, we have developed the RoverBug 
algorithm, which can be considered  a “sensorised” 
version of the classical Tangent  Graph (or “reduced 
visibility graph” [2]) concept. The RoverBug algo- 
rithm uses two operational  modes, motion-to-goal and 
boundary following, which interact to ensure global 
convergence. In  addition, a  “virtual”  submode of 

boundary following improves efficiency and  handles 
the limited field-of-view (FOV). Motion-to-goal is 
typically the dominant  behaviour. It directs the  robot 
to  move towards the goal using a local version of the 
tangent  graph,  restricted to  the visible region. After 
executing the resultant  subpath, motion-to-goal be- 
gins  anew.  This  behaviour is continued  until the goal 
is reached or  the  robot  encounters a blocking obsta- 
cle. In  the  latter case, the planner switches to  the 
boundary following behaviour. 

The objective of the  boundary following mode is 
to  skirt  the boundary of the obstacle, finding short- 
cuts where possible. Upon first detecting the block- 
ing  obstacle,  the  algorithm  “virtually slides” along 
the obstacle  boundary using  gaze  control, avoiding 
unnecessary  motion  toward the obstacle.  Boundary 
following continues  until the robot  either completes a 
loop,  in which case the goal is unreachable  and the 
algorithm  halts, or the locally visible region contains 
a new subpath  toward  the goal. In  the  latter case, 
the mode switches back to motion-to-goal. It can be 
shown that with  these  two  operational modes work- 
ing together,  the RoverBug  algorithm is guaranteed 
to  reach the goal (or  halt if the goal is unreachable) 
in finite  time, is correct,  and produces locally opti- 
mal  (shortest-length)  paths.  Furthermore, RoverBug 
deals with  the limited FOV of flight rovers in a man- 
ner which is  efficient and minimises the need to sense 
and  store  data, using autonomous gaze control. 

A  complementary rover localisation  algorithm is 
used to determine the change in the rover position by 
comparing  terrain  maps  generated before and  after 
each subpath is traversed.  While the rover plans its 
movements, the  terrain sensed by the rover cameras is 
compiled into  a  digital  elevation  map. After travers- 
ing the  subpath  generated by the planner,  the rover 
senses the terrain  through which it has just moved 
and generates  a second terrain  map  that is registered 
to  the first in order to determine  the change in the 
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rover pbsition. The  map  registration is performed 
by detehining  the relative  position that optimises 
a  maximuy-likelihood  similarity  measure.  An effi- 
cient multigesolution  search is used to determine  the 
optimal  re  ,stration  without  examining each  position 
explicitly. t y  fitting the likelihood function that is 
computed  with a  parameterised  surface, we compute 
subpixel  localisation  estimates. In  addition,  the un- 
certainty in the localisation can  be  estimated in order 
to combine the result  with other sensors, for example 
using an extended  Kalman  filter. 

Both RoverBug and  the localisation  algorithm have 
been implemented  on the  JPL Rocky 7 prototype mi- 
crorover, a  research vehicle designed to  test technolo- 
gies  for future missions. Rocky  7, which is roughly 
the  same size as  the  Ssjourner rover now on  Mars, 
has  three  stereo pairs of cameras for navigation: 
two body-mounted,  and  one  on  a  deployable  1.2m 
mast. The implementation  has been tested in the 
JPL MarsYard as well as i n  natural arroyo  terrain, 
including traverses for tens o h e t e r s  requiring multi- 
ple iterations of the motion  planning  and  localisation 
algorithms.  Together,  these  algorithms significantly 
augment microrovers’ autonomous  navigation ability, 
which in turn will aid in produ successful mobile 
robot missions. 

2. PATH PL 
. .  

The  current scenario for a rover sensing  system 
consists of a  stereo  pair of cameras  mounted  on  a 
mast, as well as two body-mounted  stereo  pairs, fore 
and  aft. Typically, the  mast  cameras,,have a 30” to 
45” field of view (FOV)  and  the body-mou‘hted cam- 
eras  an 80” to 100” FOV,  and the ‘bisible region” con- 
nected with  these sensors sweeps out roughly  a wedge, 
with  limited  downrange  radius.  On  Rocky 7 ,  stereo 
triangulation is used to  generate a wedge-shaped ter- 
rain  map [4]. A  step/slope  model [5] is used to detect 
obstacle pixels within  this  range image, and  the con- 
vex hulls of distinct  obstacles are  computed.  Next,  the 
system Ligrows” the obstacles’ convex hulls, account- 
ing for the size of the rover as well as incorporating 
an empirically-determined  safety buffer, to create  the 
configuration  space  obstacles,  or  “C-obstacles.” (See 
Fig.:! for an example, in this case using multiple  stereo 
images to  form a single combined “wedge” view.) If 
the goal lies within  a  C-obstacle, the obstacle’s ver- 
tices are  marked as goals, so an operator  can  designate 
a  particular rock as a target,  e.g., for later  instrument 
placement.  Each  C-obstacle  vertex is also labelled if 
it lies within  another  obstacle,  or  outside the bound- 
aries of the  current wedge. 

Figure 1: The Rocky7 Prototype Microrover, devel- 
oped at  JPL  to  test technologies for future missions. 
It is pictured here in the  JPL MarsYard, an outdoor 
testing  arena  featuring  simulated  martian  terrain. 

Due to  severe constraints on computational re- 
sources, the RoverBug motion  planner is designed to 
identify the minimal  number of sensor scans needed- 
and which specific areas to  scan-to proceed at  each 
step, while avoiding unnecessary rover motion. The 
planner,  based  upon  the  Wedgebug  algorithm devel- 
oped  in [3], uses a  streamlined  local model (the C- 
obstacles) which is  renewed at  every step,  thus avoid- 
ing the issues of maintaining  a  global  map, which 
taxes the limited memory available  and is sensitive 
to registration  errors. However, the algorithm does 
require  good  localisation to  track  the goal position 
and to determine  whether the rover has  executed  a 
loop around an obstacle.  Hence, the planner  has been 
paired with the on-board  localisation  algorithm de- 
scribed in Section 4. 

The RoverBug  algorithm relies upon  the construc- 
tion of the local version of the  tangent  graph within 
the visible ‘kedge.”  The  tangent  graph consists of all 
line segments in freespace connecting the initial posi- 
tion, the goal,  and all obstacle  vertices,  such that the 
segments are  tangent  to  any obstacles  they  encounter. 
Let LTG(S)  be  the local tangent  graph within  the set 
S ,  defined as the tangent  graph  restricted to S .  

The  next two  subsections  describe the operational 
modes of the RoverBug algorithm  in more detail. (Of 
note, no information,  other  than explicitly recorded 
points and  parameters, is passed between steps.) 
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Figure 2: Results from a  multi-image “wedge” view. (a) Left images from the mast-mounted  stereo 
pair (b) Height of pixels determined using stereo  triangulation  (Black pixels indicate no data) 
(c)  Overhead view of elevation map,  with  detected obstacles’ convex hulls and corresponding C- 
obstacles, and a computed  subpath 

2.1. MOTION-TO-GOAL 

The basic thrust of the motion-to-goal mode is 
monotonic progress  toward the goal.  At the beginning 
of the  path sequence, an initialisation step records the 
parameter dLEAvE = d(A, T ) ,  -where A is the rover’s 
initial  position, and T is the .goal. This  parameter 
marks the largest  distance t 
during  a motion-to-goal segm 
is composed of a  series of ste 
of a sensing, a  planning,  and t 
within  a single operational  m 

Each motion-to-goal step proceeds as follows: The 
rover (at position x )  first  senses  a wedge, WO = 
W ( x ,  GO), where GO = i?? is the vector from x to  the 
goal, and  constructs  LTG(W0). The LTG nodes com- 
prise the convex C-obstacle  vertices, the &-rent rover 
position,  and an optional  node Tg in the direction 
of the goal. (Only  those vertices  within the visible 
region and on the exterior of the  set of C-obstacles 
are  used.) If there  are no visible obstacles  directly 
between the rover and  the goal, Tg is added so the 
LTG contains  a path directly  towards T. The plan- 
ner searches a subgraph of the  LTG, Gl(W0) = {V E 
LTG(Wo)l d(V, T) 5 min(d(z,T),  dLEAVE)}, for the lo- 
cally optimal  (shortest  length)  path  to  the goal, using 
an A* graph  search method. 

If a path is found,  a  subpath is generated by trun- 
cating  the  path  at  the far radius of the visible wedge 
(leaving an  empirical buffer so the rover does  not be- 
gin the next step  directly behind  a previously un- 
sensed obstacle),  and  the  planner  returns  the LTG 
nodes along the  subpath  (and  the point where the 
path was truncated)  as waypoints for the  path execu- 
tion  algorithm. 

This cycle repeats until  either  the rover reaches 

the goal,  or no clear path  to T exists  within the visi- 
ble region. If the planner  detects that  the rover can- 
not  make  forward  progress through  the current wedge, 
the rover must  skirt  a blocking obstacle to reach the 
goal. RoverBug then switches to  its boundary follow- 
ing mode. 

2.2. BOUNDARY  FOLLOWING 

Upon  detecting  a blocking obstacle 0, it is clear 
that  the rover must  circumvent the obstacle in or- 
der to resume  progress  toward T .  Unfortunately, the 
Rocky 7 mast is not  capable of detecting  obstacles 
reliably  within  roughly Im of the vehicle, so bound- 
ary following must  be accomplished using the body- 
mounted  stereo  pairs.  These  cameras have a  limited 
useful range,  roughly 0-1.5m from the vehicle, and 
cannot  generally “see behind”  obstacles ( a s  can the 
mast  cameras).  Therefore, being close to an  obstacle 
restricts the rover’s already-limited view and  can re- 
sult  in  tiny  incremental  steps.  In order to efficiently 
acquire data from the robot’s  current position and 
to avoid as much inefficient motion as possible, we 
add  a  submode of boundary following, called “virtual 
boundary following.” 

In essence, the  object of “virtual  boundary follow- 
ing” is to  swing the  mast cameras back and  forth in a 
prescribed manner,  to search for the “best” place to 
move and begin “normal  boundary following,” thus 
generating  a local shortcut in the rover’s path.  First, 
the planner chooses a temporary “positive” sense of 
rotation by selecting the side of the blocking obsta- 
cle with the  shortest  path  to T (which will pass out- 
side of the visible region).  Next, the rover scans the 
wedge Wl = W(z, GI), where L(i??,Ck) = 2 k ~ ~ , , , t  
(amast is the half-angle subsumed by a  mast wedge). 



;et Usensed Wk(x).  The  planner  computes 
LTG(m).’$We define the wedge boundary  as  the 
two rays  bgpnding the visible region; the  arc defin- 
ing the downrange  radius is considered  interior to  the 
wedge. If 3 a  node  V E LTG(m) n dO such that 
V E int(W),  the  robot moves to V and begins “nor- 
mal boundary following,” first  recording  two  features: 
dreach,  the closest distance to  T encountered so far 
on do, and Vioo>, the intersection of (the near  side 
of) dO with the bounding  ray in the “negative” di- 
rection. If there is no  such  node V ,  the planner di- 
rects the sensor to scan. W-1 = W(z, $-I), constructs 
W = WO U W1 U W-lp and searches the freshly ex- 
panded LTG(m).  In,~this  manner,  the robot  scans 
back and  forth  until  a  suitable node is found, then 
travels there  to begin “nornaal boundary following.” 

“Virtual  boundary followiag” ends  when  one of two 
events  are  detected: 

- 1  

- 

1. 3V E LTG(m) n dO such that V E in t (v) .   The  
robot moves to  V, and begins normal  boundary 
following. 

2. The latest  scanned wedge oygrlaps a previously 
scanned region (Le., IL($,-,,qast)l > T ) .  In  this 
case, the  robot is trapped by. 
cle, and the algorithm  halts 

“Normal boundary following” 
toward the goal and  one  in th  
around  the  obstacle  boundary, t 
a clear path  towards  the goal  exists while the robot 
circumnavigates the obstacle.  In  this  mode, at  the 
start of each step,  the rover turns  tpvard  the goal 
and uses its  body-mounted  cameras to sense WO, then 
searches Gl(W0). If T E WO, the rover moves to  T 
and  the algorithm halts.  Otherwise, if there is a clear 
path  to T through WO, the planner  directs the rover 
to raise its  mast  and image  toward the goal. (Rocky 
7 is unable to have its  mast deployed as it moves.) 
Boundary following exits  here if 3V E Gl(W0) such 
that d(V, T )  < dreach,  the leaving  condition, in which 
case the planner  resets dLEAVE to d(V, T ) ,  and begins 
a new motion-to-goal segment. 

If neither of these  conditions  hold, the rover turns 
in the positive direction by &bo,&, (the half-angle sub- 
sumed by the  body-mounted  cameras), senses a new 
wedge, and  constructs the new conglomerate wedge 
W .  If Koop E W(x,Fz),  and Koop E the connected 
portion of do containing x, the robot  has  executed 
a loop-therefore, the goal is unreachable,  and the 
algorithm  halts.  Otherwise, the planner  computes 
V E aOnLTG(W(z, Fz)) such that  d(x, V )  > d(s ,  V‘) 
‘dV’ E dO n LTG(W(z.fz)) .  If V E intm, the robot 

- 

records dreach, executes this  subpath,  then begins a 
new boundary following step. Otherwise, the rover 
turns  again.  The rover stops  turning  either when it 
has  detected V i o o p ,  has  found a  suitable  point  V, or 
has  turned so far that  it is overlapping an  area already 
contained in v, in which case the algorithm aborts. 

3. TRAVERSE 

The execution of each subpath in the implementa- 
tion of this system  on  Rocky 7 is accomplished using 
the “Go-to-Waypoint” algorithm described in [7] as  a 
heuristic collision avoidance mechanism. Future work 
will incorporate  a  path-execution  algorithm designed 
to follow a series of waypoints,  discarding  those passed 
during collision avoidance  manoeuvers,  and able to 
request  a  replan if the rover strays  too far from its 
computed  path. 

4. LOCALISATION 

After a subpath  has  been  traversed, localisation is 
performed in order to correct  errors in dead-reckoning 
that have  accumulated.  This is accomplished by 
imaging there  terrain  through which the rover has just 
moved and comparing i t   to  the map  generated prior 
to  the  path planning for this  subpath.  Both  terrain 
maps  are  generated  using  stereo vision on-board the 
rover [4]. 

4.1. MAP  SIMILARITY MEASURE 

In  order to formulate the matching problem in 
terms of maximum-likelihood  estimation, we use a 
set of measurements that  are a function of the robot 
position.  A convenient set of measurements  are the 
distances from the occupied cells in the local map to 
their closest occupied cells in  the global map. Denote 
these  distances O f ,  ..., 0,” for the robot position X .  
The likelihood function for the robot position can be 
formulated as the  product of the probability densities 
of these  distances. For convenience, we work in the 
In L ( X )  domain: 

n 

In L ( X )  = lnp(Dx) 
i= 1 

For the uncertainty  estimation to be accurate, it 
is important  that we use a probability  density func- 
tion (PDF)  that closely models the sensor uncertainty. 
This  can  be accomplished using a PDF  that is the 
weighted sum of two terms: 
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D X )  = CYPl(DX) + (1 - Cr)pz(DX) 

The first term describes the error  distribution when 
the cell is'an inlier (in  the sense that  the terrain posi- 
tion under  consideration in the local map  also  exists 
in the global map).  In  this case, 0: is a  combination 
of the  erroh in the local and  global maps at  this po- 
sition.  In the  absence of additional information  with 
respect to  the sensor error, we approximate p l ( D x )  
as a  normal  distribution: 

The second term describes the error  distribution 
when the cell is an  oiltliq.  In  this case the position 
represented by the cell in #+e local map does not ap- 
pear  in  the global map.  This  may  be  due  to range 
shadows that were present'when  the global map was 
constructed  or  outliers that  are present in the  range 
data when the local map is constructed.  In  theory, 
this  term should  also decreas$as DX increases, since 
even true outliers are likely ar some occupied 
cell in the global map. H 
logical cases to have an  un 
for a  particular  robot pos 
found that modeling this 
convenient and effective: ? .  .$@ 4:g 

p z ( D X )  = K' 

4.2. SEARCH  STRATEGY 

A multi-resolution  search strategy is- used to  de- 
termine  the most likely robot  position [l, 61. This 
method is guaranteed to locate the optimal  position 
in the discretised  search  space. The pose space is first 
discretised at  the  same resolution as the occupancy 
grids so that neighboring  positions in the pose space 
move the relative  positions of the grids by one grid 
cell. We then  test  the nominal  position of the robot 
given by dead-reckoning so that we have an initial po- 
sition  and likelihood to compare  against.  Next, the 
pose space is divided  into  rectilinear cells. Each cell is 
tested to determine  whether  it  could  contain  a posi- 
tion that is better  than  the  best position found so far. 
Cells that cannot  be  pruned  are divided  into  smaller 
cells, which are  examined recursively. When  a cell  is 
reached that contains  a single position in the discre- 
tised pose space, then  this position is tested explicitly. 

To  determine  whether  a cell C could contain  a pose 
superior to  the  best found so far, we examine the pose 
c at  the center of the cell. A bound is computed on 

the maximum  distance between the location to which 
a cell in the local map is transformed by c and by 
any  other pose in the cell. We call this distance A,. 
For the space of translations, A, is simply the dis- 
tance between c and any  corner of the cell.  To place a 
bound  on the quality of any position  within the cell, 
we bound  each of the distances that can be achieved 
by features  in the local map over the cell. This is done 
by subtracting  the maximum  change of the cell, A,, 
from the distance achieved at  the center of the cell, 

D c  = max(Df - A,, 0) 
Dl : 

The values obtained  are  then propagated  through 
the likelihood function to bound the score that can 
be achieved by any position  in the cell. 

P," = Inp(DC) 

PF is now the maximum  score that  the  ith feature 
of the local map  can  contribute  to  the likelihood for 
any position in the cell. 

A bound  on  the best overall likelihood that can be 
found at  a position in the cell is given by: 

n 

If this  bound does not surpass  the best that we 
have  found so far,  then  the  entire cell  is pruned from 
the search.  Otherwise,  the cell is divided  into two cells 
by slicing it along the longest axis  and the process is 
repeated recursively on the subcells. 

4.3. SUBPIXEL LOCALISATION 

Using this probabilistic  formulation of the locali- 
sation problem, we can estimate  the  uncertainty in 
the localisation  in terms of both  the variance of the 
estimated  positions  and the probability that a quali- 
tative failure  has  occurred. Since the likelihood func- 
tion measures the probability that each position in 
the pose space is the actual  robot  position,  the uncer- 
tainty in the localisation is measured by the  rate  at 
which the likelihood function falls off from the peak. 
In  addition, we can perform subpixel localisation in 
the discretised pose space by fitting  a surface to  the 
peak that occurs at  the most likely robot  position. 

We assume that  the likelihood function can be ap- 
proximated  as  a  normal  distribution in the neighbor- 
hood  around  the  peak location. Fitting such a  normal 
distribution to  the computed likelihoods yields both 
an estimated  variance in the localisation estimate  and 
a  subpixel estimate of the peak  location.  While the 



~‘‘$.q&roxi~ation of the likelihood function  as  a  normal 
ot always be  ideal,  it yields a good 
ighborhood  around the peak  and 

our  experimental  results  indicate that very  accurate 
results can  be achieved under  this  assumption. 

In  addition  to  estimating  the  uncertainty in the lo- 
calisation estimate, we can use the likelihood scores to 
estimate the d&bability of a  failure to  detect  the cor- 
rect position oi the robot.  This is particularly useful 
when the  terrain yields few landmarks or other refer- 
ences for localisation  and thus  many positions appear 
similar to  the  robot. 

4.4. TARGET SELECTION 

Prior to  performing  localisation, the rover analyses 
the  terrain in the  map  generated at the initial rover 
position  in  order to select a localisation  target. This 
target is the position in the  terrain  that  the rover 
looks at  in  order to  generate  a new map  to match 
against the previously  generated map. We want to 
select a location that has  very  distinctive  terrain  and 
that allows the localisation to beeperformed  with  the 
smallest  uncertainty. 

The localisation target is det 
the  amount of error  present in 
the  initial rover position  as well 
that would be  generated by im 
the final rover position.  These 
a  probability  map of the  terra 
from the final rover position. Each cell in  this  map 
contains an  estimate of the probability that  the cell 
will be seen as  occupied by the rover. By  treating 
this  probability  map as a terrain  map  and comparing 
it to  the  map generated at  the initial rover position, 
we can  predict the uncertainty that will occur in the 
localisation for any  target  that  the rover may look at  
to use  for terrain  matching.  The location with  the 
lowest predicted  uncertainty is selected as the locali- 
sation  target. 

5. RESULTS 

The  implementation of the RoverBug and localisa- 
tion  algorithms on the Rocky 7 prototype Mars rover 
has been tested in the  JPL MarsYard and in natural 
terrain, for traverses up  to  tens of meters  requiring 
several iterations of both  algorithms.  The basic sce- 
nario is as follows: the rover is situated in unknown, 
rough terrain.  The  remote human operator designates 
a goal, which is generally  outside the range of the 
rover’s sensors, and  sets in motion the autonomous 
navigation  system. The system begins by directing 

Figure 3: Results from a  multi-step run in the  JPL 
MarsYard. The  path begins in the lower right corner 
of the image,  toward  a  goal  approx. 21m distant in 
the  upper left.  Each (single-image) wedge depicts a 
rangemap  produced from mast  imagery,  and  extends 
roughly 5m  from the imaging  position. The obstacles 
are  marked by a black convex hull, and a grey C- 
obstacle.  Each subpath  ends  with  an  apparent “jag” 
in the  path; these  are  not in fact  motions,  but  rather 
the result of the localisation  procedure  run at  the con- 
clusion of each step.  The second line echoing the  path 
is the rover’s telemetry for the  run. 

the mast to  image towards  the goal, generating data 
for both  the localisation and motion planning algo- 
rithms. The RoverBug  algorithm  searches  the result- 
ing LTG,  and  directs  the  mast  to look in the  appro- 
priate  direction(s) to produce  the first subpath. Upon 
the traversal of the first subpath,  the localisation algo- 
rithm  corrects the rover’s position  estimate.  The cy- 
cle repeats,  and the system  incrementally builds and 
executes  each subpath  until  the goal is reached. 

Fig. 2 demonstrates the generation of a path seg- 
ment from a  multiple mast images, treated as a single 
“wedge” view. The generated  path  skirts all of the 
obstacles  and achieves the goal using data from all 
four of the stereo  pairs. 
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)’). .. F i g .  3 shows the results of one  typical run in the (61 C. F. Olson and L. H. Matthies. Maximum-likelihood rover 
Ma;sYai$:+ The goal was approximately 21m distant localization by matching range maps.  In Proceedings of 
from the i&it,ial position,  and the radius of each wedge the International Conference on Robotics and Automation, 

was 5m. Tce obstacles’ convex hulls and  silhouettes 
pages 272-277, 1998. 

are  computed  within each wedge view, and a subpath [7] R. Volpe, J. Balaram, T. Ohm,  and R. Ivlev, The Rocky7 

generated, which is executed before the next wedge 
Mars rover prototype. In Proceedings of the IEEE/RSJ 
Conference on Intelligent Robots and Systems, 1996. 

view  is taken. The  steps of the localisation  algorithm 
straddle each  kath-planning cycle, generating an up- 
dated position estimate  after  the execution of each 
subpath.  The  resqltant  multi-step  path  runs from 
lower right to  uppekleft. 

6. SUMMARY 

The specifications for autonomous rovers for the 
currently  planned  Mars missions place strenuous re- 
quirements  on the rovers’ ability to traverse long dis- 
tances to ground-specified targets safely and accu- 
rately.  A  system able  to achieve accurate  long-range 
navigation through  planetary  terrain is described, 
which combines sensor-based  motion  planning and vi- 
sual  localisation.  Results from the Rocky 7 prototype 
rover are  presented, which demonstrate good perfor- 
mance of the  system. ‘ 
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